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Federated Learning (FL) enables learning predic-
tive models without centralizing raw data, marking a
paradigm shift toward privacy-preserving machine learn-
ing [1]. It enables effective collaboration by alternating
between on-device training, communication, and aggre-
gation of locally fine-tuned models. However, FL also
introduces several challenges: (a) dealing with commu-
nication bottlenecks and (b) execution under computa-
tional constraints on edge devices. Using sparse models
is a promising solution to address such concerns since
suppressing less relevant model parameters permits the
reduction of both the communication costs and the com-
putational costs of the process, especially when special-
ized hardware can exploit sparse operations [2]. How-
ever, to be effective during training, the sparsification
procedure must account for the iterative nature of fed-
erated optimization and the potentially heterogeneous
data held on learners (i.e., clients). For example, if
each client were to naively and independently sparsify
their parameters after training, the resulting sparsifica-
tion masks may differ if their data heterogeneity induces
dissimilar models.

Figure 1: Test Accuracy of Different Sparsification Meth-
ods on ResNet-18 on CIFAR10.

This work introduces SparseFedPP, a training accel-
erator inspired by Powerpropagation [3] and SWAT [4],
to improve the efficiency of cross-device FL. Through the
integration of Powerpropagation which induces clients
towards naturally highly sparse models, we have ef-
fectively addressed some primary challenges associated
with sparse networks in FL. Firstly, faster convergence
during training of the global model is achieved, which
leads to better consensus on the sparsity mask among
all clients, resulting in improved performance. The
achieved sparsity in the model is then utilized to analyze
the model’s layer sensitivity, allowing for accurate spar-
sification of the activation during the backward pass,

following an approach similar to the one proposed in
SWAT.

With SparseFedPP, we were able to apply a high
sparsity ratio to the model with minimal or no perfor-
mance loss, achieving sparsity levels up to 99.9%.
Thanks to a more aware sparse distribution among the
layers, we outperformed ZeroFL, a previous integration
of SWAT in FL [5]. Fig. 1 shows the difference in perfor-
mance degradation between SparseFedPP, ZeroFL, and
a naive Top-k sparsification applied after local train-
ing [6], particularly at high levels of sparsity. Further-
more, when coupled with a lossless model compression
technique such as Compressed Sparse Row (CSR) [7],
SparseFedPP produces a remarkable 145x speed-up
in communication costs.

Experimental results have demonstrated a signifi-
cant reduction in computational operations, leading to
a potential speed-up in on-device inference and train-
ing time. Additionally, there is a significant decrease in
memory consumption during training, both on-device,
facilitated by the sparsification of activations saved for
the backward pass, and in communication, due to the
substantial reduction in model dimensions. The de-
crease in communication bandwidth usage also acceler-
ates the training rounds. These achievements make FL
more scalable and efficient, enabling less capable devices
to train models in FL even in constrained networks.
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