
Oxidizing Robots:

Advancements of Rust on Android

Daniel Hugenroth & Luis A. Saavedra
University of Cambridge

{dh623,las91}@cl.cam.ac.uk

Smartphones have become the primary computing devices for people world-
wide. As such, they store both company secrets and our most intimate pictures
and messages; they keep track of our whereabouts during our everyday lives;
and they secure authentication as a second-factor; This trove of sensitive data
and use-cases make them a high-value target for criminals and sophisticated
state-level actors alike.

Targeted attacks, such as those performed by state-level adversaries, typically
exploit software vulnerabilities. The most powerful ones use remote-code ex-
ploitation (RCE) of vulnerabilities that are not known or patched (0-days) and
do not require any action from the user (Zero-Click). Historically, many such
vulnerabilities have been found in media codecs and file format parsers writ-
ten in C/C++. These components exist both in the operating system and in
individual apps and their dependencies.

Over the past few years, Rust has gained popularity as a programming lan-
guage that offers high performance comparable to existing native code, while
simultaneously providing zero-overhead correctness guarantees that are verified
at compile time. Large companies, including Google, have already announced
plans to rewrite critical code paths using Rust. This trend lends credibility to
Rust’s potential as a candidate for reducing security and correctness bugs.

In our presentation we offer a snapshot of our ongoing research to measure
and analyse the status-quo of Rust on Android. For this we examine both
the Android Open-Source Project (AOSP) and apps distributed through the
Android Play Store.

We use the commit history of the AOSP repository to capture the progress of
integrating Rust into Android. Specifically, we examine where Rust is being
deployed and whether there is a focus on components that have previously
exposed vulnerabilities. In the second part of our presentation, we leverage
an existing database of app files to investigate Rust’s adoption in the wider
ecosystem. We explore which apps are among the first to adopt Rust and
whether these changes are part of the app’s own code or imported through
(transitive) dependencies.

Finally, we identify roadblocks that might impede more wide adoption and de-
ployment of Rust on Android. We believe that the insights from the Android
ecosystem provide valuable lessons for promoting safer languages on other mo-
bile devices as well.


