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Abstract— Machine Learning (ML) models for sequence-
to-sequence tasks predicting one series from another expect
continuous time series, but missing points and inconsistencies
are common in mobile and wearable data. Additionally, models
are often not integrated with uncertainty-aware solutions:
uncertainty estimations are crucial, as they can discern con-
fident vs nonconfident predictions. We propose uncertainty-
aware sequence-to-sequence prediction on sparse time series.
We enhance the state-of-the-art evidential regression with time
series interpolation and modify its loss function for irregular
series, tuning it to assign different weights to different types
of points, as required by distinct uncertainty meanings varying
per task and requirement. We also propose novel metrics for
assessing the success of uncertainty estimations on sequence-to-
sequence predictions, offering a robust way to assess uncertainty
given by ML models, as opposed to accuracy-focused metrics.

I. INTRODUCTION
Sequence-to-sequence regression tasks [1] are prevalent in

real-world ubiquitous applications, like in using smartwatch
PPG for heart rate monitoring. However, relying solely on ac-
curacy as a measure of model goodness is insufficient, as the
uncertainty can offer an orthogonal dimension to the value of
the model prediction. Evidential Deep Learning [2] is widely
accepted as the state-of-the-art for capturing uncertainty and
has been validated for regression [3], but it has neither been
verified nor tailored on sparse time series, widespread in
cases of sensor data loss. Additionally, many commonly-
used uncertainty evaluation metrics like the Brier score and
the Expected Calibration Error are designed for classification
and are rarely applicable to regression, while others like the
Negative Log Likelihood [4] only give indirect insights about
uncertainty. Also, many works focus on representing model
uncertainty, but there are no metrics to quantify and compare
the success and usefulness of these uncertainty estimates.

II. METHODS
Interpolation Sensors suffer from transmission errors or

temporary malfunctions, leading to irregular time series with
missing or incomplete data. To address this, we interpolate
missing values, ideal for data with an irregular sampling rate.

Loss Function for Evidential Regression We adapt the
loss function of Deep Evidential Regression [3] to accom-
modate for the irregularity in sparse time series by weighting
the interpolated points and the actual values of the series on
a point-by-point basis. This allows the model to focus more
or less on the real points or the missing points for uncertainty
estimation, depending on the specific application. As a result,
this method provides the advantage of tuning the uncertainty
in the model’s predictions based on different requirements.

Uncertainty Metrics We introduce novel uncertainty met-
rics to assess uncertainty representations given by different
solutions. The first is the Uncertainty Mean Absolute Error
(Uncertainty MAE), and the second is the Uncertainty Mean
Absolute Percentage Error (Uncertainty MAPE). These are
calculated by adding the uncertainty to the error of the
predicted values and can quantify the “worst case” prediction
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in critical tasks. The third is the ratio of samples outside the
range of predicted values ± uncertainty, while the fourth
is the MAE of samples outside that range. These allow for
evaluating the “trade-off” between having a lower or a more
accurate uncertainty, and help quantify its significance.

III. EVALUATION
Case Studies First we predict the hypoglycemia risk

(output sequence) of type 1 diabetics given readings from
Continuous Glucose Monitoring (CGM) wearables. This can
reduce the chances of hypoglycemia that can occur suddenly
and with symptoms often preventing the user from treating
their condition. For training, we use UVA/PADOVA data [5].

Second, we focus on predicting weekly COVID-19 hos-
pital admissions (output sequence), given the percentages
testing positive in a population (input sequence) using weekly
trends data [6]. This can help in planning hospital resources.

Baselines For ground truth, we start with regular datasets
and turn them to irregular by randomly dropping a set of
samples. This gives an upper case baseline in which the
model is trained on the regular dataset (“best-case”), and
a lower case baseline in which the model is trained on its
irregular counterpart (“worst-case”) using conventional EDL.

Model Structure We use an LSTM network [7], being
the most well-known for sequence-to-sequence regression.

Results On hypoglycemia risk, the upper baseline shows
a higher uncertainty than the lower baseline, which can also
identify when the user might be suffering from previously-
unseen symptoms and needs to take corrective action. Thus,
we tune our proposal for more confident results, and achieve
confidence intervals up to 3 times more accurate, just like the
upper baseline. Using our novel metrics, we identify that this
captures the true risk for 90% of the samples, compared to
overconfident alternatives erroneously estimating uncertainty.

On COVID-19 data, the upper case shows a smaller
uncertainty, which is expected as the data benefits from
more accurate predictions and less variability. Here, we tune
for moderately more samples outside the range of predicted
values ± uncertainty, and we achieve a 20% lower MAE, and
a 3 times smaller and more focused uncertainty estimation.

IV. CONCLUSION
Our work puts forward a novel approach and evaluation

metrics for uncertainty-aware sequence-to-sequence predic-
tions in the context of sparse time series, which are common
in data harvested from mobile and wearable devices.
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