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Federated Learning (FL) [1, 2] has emerged as a prospective solution that facilitates
the training of a high-performing centralised model without compromising the privacy of
users. While successful, FL research is currently limited by the difficulties of establishing
a realistic large-scale FL system at the early stages of experimentation. Simulating such
scenarios has become the go-to approach.

Simulation can be highly beneficial if it allows enough degrees of freedom to study
different scenarios at the system and algorithmic levels. Scale and heterogeneity [3]
are the two main concerns for realistic large-scale FL system simuation. A typical
procedure to launch an FL simulation requires specifying how many clients operate in
each round and the resources each client needs. However, few frameworks provide this
interface [4, 5, 6, 7].

To facilitate efficient scalable FL simulation of heterogeneous clients, we design
and implement Protea, a flexible and lightweight client profiling component within
federated systems using the FL framework Flower [8]. It allows automatically collecting
system-level statistics and estimating the resources needed for each client, thus running
the simulation in a resource-aware fashion. The results show that our design successfully
increases parallelism for 1.66 × faster wall-clock time and 2.6× better GPU utilisation,
which enables large-scale experiments on heterogeneous clients.
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