
On Device Federated PCA & Subspace Tracking
Andreas Grammenos∗
University of Cambridge

Cambridge, UK
ag926@cl.cam.ac.uk

Cecilia Mascolo
University of Cambridge

Cambridge, UK
cm542@cl.cam.ac.uk

Jon Crowcroft∗
University of Cambridge

Cambridge, UK
jac22@cl.cam.ac.uk

MOTIVATION
In recent years there has been an increasing desire to perform
traditional machine learning and inference tasks such as feature
extraction and data summarisation on-device. Further, the data used
for training are usually sourced from the each individual device
which can be viewed as d-dimensional vectors collected in a stream-
ing fashion. Notably, this can be a challenging task when operating
in a resource constrained environment such as mobile or IoT de-
vices. Concretely, d is even moderately large, most devices will not
be able to store the collected data, nor compute algorithms normally
requiring at least Ω(d2) storage such as Subspace Tracking. Further,
due to privacy and performance considerations it is highly desirable
to be able to perform these tasks on device. In this work we try
to tackle the aforementioned problem by introducing a technique
which can be used to summarise each subspace locally on-device
and then efficiently merge them globally.

PROBLEM STATEMENT
The increasing need of being able to use mobile and IoT devices to
analyze high-dimensional, heterogeneous data and extract useful
insights on-device is becoming more prevalent than ever before.
When tackling the task of extracting information from data out of
many tools available arguably the most commonly used ones are
Principal Component Analysis (PCA) [4, 6] and Subspace Track-
ing [7, 8]. These techniques are frequently used for discovering a
linear structure or reducing dimensionality in data, so they have
become an essential component in inference, machine-learning,
and data-science pipelines. In a nutshell, given a matrix Y ∈ Rd×n

of n feature vectors of dimension d , these techniques aim to build
a low-dimensional subspace of Rd that captures the directions of
maximum variance in the data contained in Y. This is useful for a
number of reasons, for example, to reduce the dimensionality of a
high-dimensional dataset in order to minimise the computational
cost of other expensive operations.

Their computation is directly related to the Singular Value De-
composition (SVD) [1, 5] which can decompose any matrix into a
linear combination of orthonormal rank-1 matrices weighted by
positive scalars. Naturally, the computation of Subspaces, PCA, and
SVD has been studied for decades, but with the recent rise of the
need to perform on-device inference, many new and diverse chal-
lenges arise. This is primarily due to the mismatch between the
limited available resources and the size of the data to be processed.
In the context of high-dimensional data, the main limitation stems
from the fact that, in the absence of structure, performing SVD on a
matrix Y ∈ Rd×n requiresO(d2n+d3) computation time andO(d2)
memory.

∗Author is also affiliated with The Alan Turing Institute

FEDERATED COMPUTATION
To be able to fully leverage a federated computation environment
mainly comprised out of mobile or IoT devices, we would like also
to be able to perform the computation in an incremental, streaming
fashion. Indeed, there have been some previous works on how to
perform incremental SVD such as in [3]; yet, note that this particu-
lar scheme is only incremental and not streaming. This means that
every result has to be computed in-full in order to be processed,
merged, and propagated for the user to get a final result, so is not
fit for a federated computing approach. This can be problematic in
many cases, as various applications (e.g. stock exchange tracking,
video frame classification, image recognition) require to have inter-
mediate or partial solutions before the whole dataset is processed.
However, this scheme can be combined with a streaming algorithm
such as the one presented in [2] capable of producing streaming
intermediate results that can be merged earlier on in the update
propagation.

Adaptive Rank Estimation
Further when operating in a such an environment it would be con-
venient to have schemes where each individual device can adjust,
independently of each other, their rank estimate based on the dis-
tribution of the data seen so far. This is because we expect to have
nodes which observe different distributions and likely will require,
over time, to adjust the number of principal components kept in
order to accurately track the data distribution. To this end, and
in order to devise a simple, yet efficient adaptive mechanism for
selecting the estimated matrix rank of the fly, we propose a regular-
isation scheme based solely on the current singular values estimate
and their contribution to the total approximation discovered so far.

ONGOINGWORK
Currently our work is focusing on finalising the implementation on
actual mobile devices and perform large scale tests benchmarking
the aforementioned method in a real-world scenario.

REFERENCES
[1] C. Eckart and G. Young. 1936. The approximation of one matrix by another of

lower rank. Psychometrika 1 (1936), 211–218. https://doi.org/10.1007/BF02288367
[2] Armin Eftekhari, Raphael A Hauser, and Andreas Grammenos. 2018. MOSES:

A Streaming Algorithm for Linear Dimensionality Reduction. arXiv preprint
arXiv:1806.01304 (2018).

[3] MA Iwen and BW Ong. 2016. A distributed and incremental svd algorithm for
agglomerative data analysis on large networks. SIAM J. Matrix Anal. Appl. 37, 4
(2016), 1699–1718.

[4] Ian Jolliffe. 2011. Principal component analysis. In International encyclopedia of
statistical science. Springer, 1094–1096.

[5] L. Mirsky. 1966. Symmetric gauge functions and unitarily invariant norms. Quart.
J. Math. Oxford (1966), 1156–1159.

[6] Karl Pearson. 1901. LIII. On lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 2, 11 (1901), 559–572.

https://doi.org/10.1007/BF02288367


[7] Gilbert W Stewart. 1992. An updating algorithm for subspace tracking. IEEE
Transactions on Signal Processing 40, 6 (1992), 1535–1541.

[8] Bin Yang. 1995. Projection approximation subspace tracking. IEEE Transactions
on Signal processing 43, 1 (1995), 95–107.

2


	References

